Janvier 1997 - Journées Francophones des Langages Applicatifs - JFLA97

Shifting the focus from control to communication:

The STReams OBjects Environments model

of communicating agents(
Stefano A. Cerri

Dipartimento di Scienze dell'Informazione

Università di Milano

20135 MILANO, Italy

cerri@dsi.unimi.it
Abstract. The paper presents the computational model underlying a new agent communication language. Even if the applicative research context suggesting such an aim is the one traditionally identified by the Artificial Intelligence in Education community, this context, as it is motivated in the paper, is generic enough to represent a wider class of applications, i.e. all those that privilege communication among autonomous human and artificial agents. For instance, those addressed at FIPA (http://drogo.cselt.stet.it/fipa/).

The model, called STROBE, has been identified and two prototypical languages inspired by the model have been implemented. In order to describe unambiguously the STROBE model we have chosen to use a formal programming language, i.e. Scheme. STROBE shows how generic communication may be described and implemented by means of STReams of pragmatically marked messages to be exchanged by agents represented as OBjects interpreting messages in multiple Environments. The model, therefore, is at the same time a well-defined software architecture and a proposal for a lexicon potentially useful for exchanging efforts in emergent agent technologies.

Recent advancements in the project are producing new modules to be integrated in the STROBE architecture, in particular: a re-implementation of the language for software agents KQML: Knowledge Query and Manipulation Language conceived with the purpose of reducing the primitives to a minimal set and introducing compositionality in order to design new primitives from the basic ones.

An outline of the expected functionality’s of the languages under development may allow to appreciate if and how it may fit the expected ones, i.e. cognitive simplicity for designing and controlling multi-agent generic dialogues, including human and artificial communication facilities.
1.
Introduction

Communication among intelligent agents is one of the popular research issues at the moment. In ADDIN
[1] many of the current efforts are reported, together with an extended bibliography. In spite of the impressive, convincing research advancements, at the application level we do not notice yet a major impact. As it was the case for Artificial Intelligence applications, possibly once more the real problem is complexity, not so much for the equipped machine to perform according to well designed software, but rather for the designer and implementers to conceive and realize the suitable application by using available methods and tools.

Within the Artificial Intelligence and Education community ADDIN
[2] we notice a major concern that reaches the same conclusion, i.e. complexity in AI & ED research makes it almost unviable for AI & ED real applications. Even worse: research does not cumulate because neither the description nor the implementation languages are somehow common. Self's proposal was to go back to logic for expressing issues such as mutual beliefs or planning the moves in a dialogue. A hypothesis that fits trends in the AI community for the same foundational purpose, but at the same time is challenged by arguments such as those reported in this paper.

At the moment, AI & ED programs choose more and more object / agent (or actor) - based architectures, considering off the shelf languages as implementation tools (e.g. ADDIN
[3] reviews most of them). What occurs, is that those languages offer primitives and virtual machine models that are not really matching those required by the applications, or either, if they do, that they are too complex to learn and use. Cognitive simplicity in the conception and design of new applications becomes a must for any concrete dissemination of research results as well as for most applicative efforts.

We have chosen cognitive simplicity and composition of primitives as our main purpose. As we were skeptical that abstract logical formalisms would provide for cognitively simple models of dynamic processes, we have instead adopted a representation of communicative processes based on a formal, programming language suitable for process reification and visualization. Among all languages, Scheme ADDIN
[4] was chosen for its abstraction power associated with its formal foundations
 and for the simplicity of its underlying evaluation mechanism (e.g. the environment model of evaluation). The criticism that Scheme is sequential and therefore unable to model multi-agent interactions is challenged by active research in concurrent languages.

In the following, we will describe:

a. Why educational applications require generic communicative processes, and therefore why advances in educational software are enabled by advances in models and languages supporting communication and, conversely, the requirements of educational dialogues support efforts in the design of new communication languages. The educational metaphor, therefore, pushes technologies of a much wider applicability, such as those claimed to be (almost) mature by industrial initiatives such as FIPA (http://drogo.cselt.stet.it/fipa/).

b. How a simple agent-to-agent communication model
 may be described by three powerful Scheme primitives, i.e. STReams, OBjects and Environments.

c. What can be borrowed from a modern artificial agent communication language, i.e. KQML ADDIN
[7] , that may be integrated in the STROBE model, but, at the same time, what are its limitations to model dialogues where humans participate, thus why multiple viewpoints (or cognitive environments) are required.

d. Why multiple communicating agents of generic types (humans and artificial agents) require functionality’s typically associated to enhanced operating systems or actors and how we think to model them by means of Scheme extensions. Finally how the high level (Scheme) descriptions and prototypes may be integrated with lower level ones, by means of interpreting / integrating Scheme with Java, thus offering machine independent resource management utilities to be used in the net.

2.
Learning as a side effect of communication

One fundamental reflection for anybody interested in Education is that the goal of Education is that learners learn, i.e. change state during / after a communicative process. The process does not per se need to be "educational". That term applies eventually after an evaluation of the new state reached by the learner as a result of communicating. Communication is the real issue for learning and therefore for Education; learning may occur as a side effect (as it was agreed in the workshop reported in ADDIN
[8]). Educational software, then, is nothing else as highly interactive software. Whether or not communication stimulates learning in the learner is not primarily a property of the software managing the communicative process but a relation between the process and its effects on the learner
.

For instance, in ADDIN
[9] there is an example of learning outcomes from dialogues with a simulator. The author's assertion that "there is an urgent need to further research in this area and it is one of our aims to try to model these different styles computationally" supports our assumption that formal (computer) languages for dialogues are missing. Looking back in the literature (see, e.g. ADDIN
[10]), we notice that the foundations for languages representing human dialogues were laid down years ago, but still the need is not satisfied.

Other authors (e.g. [11] that developed the reflective actor language ReActalk on top of Smalltalk) claim with good reasons that "models developed for agent modeling are of relevance for practical applications, especially for open distributed applications". Among these applications, Intelligent Tutoring Systems play a major role (cf. ADDIN
[12]). We have shown in ADDIN
[3] and (37(where we used the actor languages ABCL/1 and Rosette, that when the chosen actor's granularity fits the components of the problem to be solved, then the conception and implementation of actor-based software may be relatively simple, and so their abstraction and generalization. However, the global, concurrent message exchange control process is not easily conceived. The transition from a sequential, synchronous to a concurrent, asynchronous mental model of computation (control and communication) is a hard process for any human player engaged in the technological arena today. In order to contribute, we have decided to start from understanding and modeling human-system dialogues, thus the processes in the machine that eventually are suitable to control a dialogue with a human.

Those "dialogue control processes (DCPs)" are the ones definitely interesting for understanding and enhancing primarily human-to-system communication, but, as we will see, also generic agent-to-agent communication, up to many-to-many participants. Therefore we need to make DCPs as transparent as possible by choosing an adequate underlying virtual machine model and a visible "granularity" of agents and messages that allows us to reason also in terms of human dialogues. Tradeoffs between controlling joint variables (versus actor's replacements and "pure" functional languages) and the higher level perception of the human agent's exchanges in the dialogues are exactly the issue that we try to address with our research described here in its foundational results.

2.1.
Types of communication

There exist many types of communication among humans. The discipline that studies it - pragmatics - has made remarkable advancements (cf. ADDIN
[13] for an extensive presentation). In human-to-system communication, similarly, software layers in the system manage various communicative processes with the user.

Among those types, even if we risk to oversimplify, we will select three types that we assume fit best with past and current human-computer communication systems: information systems, design systems and tutorial systems. Each type is characterized by two properties: the initiative taken (human or computer) and the type of speech acts ADDIN
[14] involved.

Assume that U is the user, and C is the computer, playing the role, on turn, of an Information, a Design or a Tutoring system committed to manage dialogues with the user.

Information systems (when they are mature) consist mainly of communication exchanges where U asks questions to C and C answers to U. During the construction of an Information system, U tells C new information that C stores in its archive. Design exchanges (e.g. programming environments) consist mainly of orders from U to C and the execution of those by C. Finally (strictly) tutoring systems consist of exchanges where C asks U questions, U answers to C and C decides what to do on the basis of U's answer. In that case, C is not interested in knowing what U believes just for updating C's knowledge - as it is the reciprocal case of U asking questions to C in informative exchanges -, but instead for deciding about what initiative to take during the dialogue in order to accomplish essentially an evaluation task leading to the next phase of the conversation. From this simplification we may assume that what we called "strictly tutorial User-Computer exchanges" are basically those where the Computer tests the knowledge of the User. In order to avoid confusion, we may call the systems supporting those exchanges: Testing systems.

From various sources in the literature dedicated to Educational software, we may conclude that Tutoring Systems (and / or Learning Environments) do engage in dialogues with the learner that include Information, Design and Testing phases. Therefore educational applications require managing dialogues with the human user of generic types. Any student may interrupt his teacher to ask for information. Any student wishes to engage in an exercise on a simulated environment where he may play with situations by ordering the simulator to run under his / her control. Information systems and design systems may be considered part of any really effective educational system of the future. What these systems need is controlling dialogues with the user in a fashion that is compatible with the user’s needs, intentions, preconceptions, goals…

Notice that in testing exchanges C takes the initiative, while in Information and Design exchanges U takes the initiative. Human-to-human dialogues are such that any of the two may take the initiative at any time, so that a swap of initiative is a common feature. Assuming to aim at more flexible and powerful artifacts, it is clear that also in human-to-computer dialogue models, informative, design and testing exchanges should be allowed and embedded within each other, at the initiative of either partner. This requirement, if respected by our proposed solutions, will allow to generalize the models to generic agent-to-agent dialogues, where each agent, human or artificial, is associated to a role (caller, called...) in each exchange, while roles may be swapped during the dialogue
.

Models of agent-to-agent communication require explicit roles, further to an explicit association of agents to physical entities participating to the communicative process. A type and a role associated to each partner, at least, will define then each exchange in communication.

2.2.
Communication is not transmission

As one may easily notice, communication is very different from transmission, and therefore we are not just interested here in phenomena at the (low) transmission level (e.g.: active sockets, busy channel, synchronization, queue scheduling) but instead mainly at the high level of active agents (available knowledge, intentions, preconditions, effects, etc.). Certainly (high level) communication between agents (human or artificial) must be founded ultimately on reliable transmission of the messages. But the last is not the major concern; it is just an important enabling factor that we assume to be able to guarantee. For instance, we assume not only that communicative messages include pragmatic aspects (e.g. sender, destinations, intention, role…), but also that these aspects may be used by the receiver to process the message (e.g. to process the queue of incoming messages).

Assuming that messages are correctly transmitted, communication is successful if the rules associated to the pragmatics of the communicative process have been respected. Agent communication languages, such as KQML ADDIN
[7] , do address the issues of communication among intelligent information agents, under the hypothesis that these agents are artificial and that they “serve” information to clients asking for it. Their pragmatic level solves most of the transmission and interoperability problems, but lack substantial components in at least two situations. One concerns the case that human agents are part of the multi-agent conversation and the other when the conversation is generic, i.e. includes all three types of exchange cited above (and perhaps other ones, such as those including commitments by a participating agent).

One weak aspect of KQML is related to multiple viewpoint ADDIN
[18], that we address by using cognitive environments as Scheme first class ADT ADDIN
[19] . Another one concerns the choice of the primitives. Regarding this, we are designing primitives that fit specifications deduced from available research on the pragmatic classification of human dialogues (such as the one reported in ADDIN
[9]). A third weakness concerns reflection, as most researchers point out (e.g. ADDIN
[2, 12]).

2.3.
Agent communication languages: KQML
The "Knowledge Sharing Effort" community, in particular concerning the language KQML
, has recently produced significant advancements. This is a language for specifying dialogues among artificial agents by means of primitives that allow queries and directives expressed in various "content languages" (e.g. SQL, Prolog) to be embedded into KQLM messages. These primitives are "performatives", such as evaluate, ask-if, reply, tell, advertise, etc. and the types of the speech acts associated to the performatives are: assertion, query, command "or any other mutually agreed upon speech act". Both choices are quite similar to our ones. The distinguishing property of KQML with respect to traditional languages is the supposed independence of the "pragmatic level" from the language of the embedded "content message". This allows an important level of interoperability. We share also this view.

A KQML application to Authoring Educational software is described in ADDIN
[20] , where the concern is mainly software reuse. We are encouraged by this and similar results concerning the productivity of software, but we are not sure that the application of tools developed for a specific context of applications - interoperability among data and knowledge bases for informative purposes - will allow to express easily issues typical of a quite different context, i.e. human-computer generic dialogues. One of those issues consists of user modeling. In ADDIN
[21] we may find an attempt to customize KQML primitives for learner modeling. We will see if and how the results of this attempt will cross / complement our own ones.

We believe that the limitation of KQML with respect to generic dialogues is the assumption that mutual beliefs of agents are correct: in the general case, this assumption may not be true. In our model, we try to model exactly those more general cases of dialogue that occur frequently in educational applications and, more in general, in multi-agent interactions.

3. The STROBE model

In ADDIN
[22] we have outlined a model of communication between agents that is based on the three primitive notions of stream, object and environment. The environment component of the model has been discussed in ADDIN
[19]. We have shown there that the desiderata emerging from the analysis of realistic agent-to-agent dialogues induce two requirements concerning the computational formalism adopted:

Requirement #1: the environment
 for evaluating procedures and variables is a first class abstract data type.

Requirement #2: multiple environments are simultaneously available within the same agent-object.

Looking at KQML, we have noticed that our first requirement may fit their virtual architecture. Basically, labeling a message with the explicit language in which the message is expressed, is equivalent - in our functional terms - to forcing the partner to use an environment for the evaluation of the query where the global frame binds the language symbols to the evaluation and application functions corresponding to a simulator (or an interpreter, or a compiler including run time support) of the chosen language. The KQML expression

 (ask-one
:content

(price IBM ?price)

:receiver
stock-service

:language
my-prolog-like-query-language

;; (corresponding to theirs LPROLOG)

:ontology
NYSE-TICKS)

may be simulated by our architecture as a request to the receiver agent to use the environment including the definitions of the my-prolog-like-query-language available. Further, the KQML expressions specify also an ontology, i.e. consider a specific environment among many possible ones where terms are defined in a coherent way suitable to represent - independently from the application - a domain of discourse assumed to be valid for the receiver agent, and known to the queerer. The natural computational manner to describe the evaluation of a KQML message like the one above is therefore to send a message with content (price IBM ?price) to agent stock-service where the evaluation environment of the agent is the composition of a global frame containing my-prolog-like-query-language 's bindings and a local frame containing the definitions available in NYSE-TICKS. But what if the receiver's ontology - even if it has the same name - would be different from the queer's?

What we have added to KQML is the second requirement, i.e. the opportunity to model the evaluation of the same query within environments that are different from the one supposed to be correct. That is necessary in order to experiment on responses from the receiver different from the ones expected by the sender.

3.1. Basic description of dialogues between two partners

3.1.1.
Agents as interpreters

Each dialogue is basically a set of message exchanges E among two agents each with a private memory. Each message exchange may be considered as one or more pairs of moves M, sometimes called acts. Each move is performed by one agent on turn that accepts a message, executes a set of internal actions and sends a message to the partner in the dialogue. In each pair of moves, we may distinguish an agent that takes an initiative, sending a move to the partner, and an agent that reacts to the other agent's initiative. Agents may take the initiative when they wish, but we assume initially to respect the turn-taking rule that agents wishing to take an initiative may do that only after they have reacted to the partner, with the exception of the very first move. Therefore a swap of the "initiative" role among partners is allowed during the dialogue process
, even if the "turn-taking rule" is assumed to be respected. Further, we assumed (initially) full synchronization: an agent waits to react until he has received the other agent's message.

In computational terms, each agent's operation in a single move may therefore be modeled by a REPL: "read - eval - print - listen" loop, similar to the cycle of an interpreter. If agent P sends a move M to agent Q, then Q "reads" M; "evaluates" M to obtain a response, "prints" (sends to P) the response and "listens" to the next move. This is Q's REPL cycle. P's REPL cycle is shifted with respect to Q's. P "prints" first, then it "listens", then it "reads" Q's response, then it "evaluates". In this turn-taking P was the initiator, Q the responder. Let's now concentrate on a single initiative dialogue, even if the model is valid for mixed initiative dialogues.

3.1.2.
Informal description of interactions

In case the input move is an assertion, it is reasonable to assume that the expected result is the extension of the receiver's environment by a new binding that reflects the assertion 's content. Therefore, when the input message is an assertion, the expected behavior of the receiver will be to define (or set!) a new name-value binding, that extends / modifies the receiver's environment, and to acknowledge the partner of the success of the operation. When the input move is a query, the expected reaction of the partner will be either a search for a value in the private memory or the execution (application) of a procedure, according to the nature of the query. In the latter case, the query is in fact an order. A search in the environment is performed in Scheme by calling the eval on the expression included in the move. If that is a variable, a search in the environment will find the corresponding value, else, if that is an expression indicating functional application, the apply is invoked on the value of the first sub-expression after the evaluation of each parameter.

The querying agent may predict the answer - in case he is able to make hypotheses about the partner's private environment, i.e. the partner's knowledge or beliefs -, but the success of the prediction is not certain.

In dialogues involving humans the search for a cause of a mismatch constitutes the traditional issue of cognitive diagnosis ADDIN
[2]. Cognitive diagnosis must cope with the problem that one cannot make a closed-world assumption in a human and therefore one should identify strategies for the testing of hypotheses empirically selected ADDIN
[3] .

The same, unfortunately, occurs also when the assumption may superficially be considered valid; even if it is not, as it is sometimes the case of dialogues among artificial agents. For instance, in debugging hardware microcircuits many assumptions are made in order to reduce the search space, because an exhaustive search of the inconsistencies may not be tractable, thus introducing potential errors (in case one or more assumptions was incorrect). Agents searching for information available on the web, for instance the cheapest available book or stock share available, cannot foresee unpredictable interactions with the external world
 (e.g. an offer suddenly available in a server in Tokyo), so that, contrary to what we may assume, the dialogue situation may be unpredictable and thus is inherently open. Basically, all situations where new events may change the search space during the time needed for exploring it are inherently open.

3.1.3.
The lexicon
Let us call:

P

the agent initiating the dialogue;

Q

the partner;

i0

the initiating message sent - conventionally - by P to Q at time 0;

o0 , ... on , ...
the sequence of outputs of agent Q, each corresponding to an input;

g0 , ... gn , ...
the sequence of procedures applied by Q;

f0 , ... fn , ...
the sequence of procedures applied by P

to its inputs o0 , ... on , ..., yielding i1 , ... in+1 ... ;

t

the variable denoting the discrete time, i.e. the turn-taking index;

t= 0, 1, ..., n, n+1,

Adopting a syntactic notation for the application of a function to its argument that consists in simple juxtaposition, we may assume that:

on = (gn in) and in+1 = (fn on).

3.1.4.
STReams

According to this lexicon, the set I (including the messages of P, the initiating agent in the dialogue) is build dynamically during the process of message exchange. In other words, P evaluates (generates) the next message to be send to Q only after P has received Q's answer, i.e. P delays the evaluation of the next message.

An abstract data type that represents this mechanism of delayed evaluation is the stream. Streams are optimal data structures as they model sequences that do not yet exist, but eventually may exist at the time they are needed.

This property is essential in dialogue exchanges: one cannot "undo" the effects of a sequence of moves between autonomous agents retrospectively. Backtracking and their associated belief/truth revision techniques, are notions that are associated to search in closed systems, not to interactions with open systems. Time cannot be reversed.

Streams model nicely the fact that planning in autonomous, interactive systems is different from planning in closed systems. An agent in STROBE may plan ahead only the next move, because the second next move will possibly be generated by another planner, different from the previous one, that we cannot know before. Even the Scheme evaluation model may be modified from one time to the other.

This observation forces us to consider the issue of reflection, widely debated within the AI & ED ADDIN
[2] and within the Programming Languages research (see, e.g. reflection in LISP-like languages reported extensively in ADDIN
[23]). We agree with the requirements outlined in ADDIN
[2] and the criticisms to interoperability in actor languages like Actalk reported in ADDIN
[11] . The last author solved the issue of generic MOC (Model of Computation) in Actor Languages by designing his ReActalk reflective actor language. We have the ambition to provide even more evidence for the need of reflection in dialogue modeling languages, but wish also to keep our basic MOC as simple as possible. In order to do that, we have taken an example of a simple, interactive, reflexive interpreter built in Scheme by slightly modifying the eval primitive designed in Continuation Passing Style ADDIN
[24] and plan to integrate a revised version of it into our prototypical language.

3.1.5.
OBjects

The notion of private memory is crucial in generic dialogues. Some knowledge may be shared other knowledge is necessarily private. Encapsulation of variables and methods (information hiding), among other features of objects in object-oriented programming (OOP), make them attractive for modeling private knowledge in each agent, but do not explain what occurs when agents exchange real messages in an autonomous fashion.

To keep the architecture simple, we will not include here any in-depth consideration about objects, such as (multiple) inheritance, virtual methods, meta-object protocols and the like. These - more advanced - opportunities offered by objects might all be modeled by using the standard primitives of the language. For an extended discussion about objects in Scheme defined only on the basis of first class functions (and therefore the basic MOC of the language) see ADDIN
[25] .

3.1.6.
Environments

We will call eQ0 ... eQn the private environments of Q and eP0 ... ePn the private environments of P as they are generated at subsequent phases of the dialogue. Each environment includes a set of local frames - modeling a private, non shared memory - and possibly other higher level frames modeling a memory shared with the partner, up to the global environment that is supposed to be shared. This shared environment models the agreement among agents about the syntax and semantics of the Scheme expressions that are part of the moves. Because agents are instances of the same object class, they may share also the functionality’s concerning how to react to a partner’s move, i.e. they share the pragmatic rules of the dialogue
.

TABLE 1: the dialogue process with explicit environments

Exchanges

Moves

E0 :
i0

->
((g0 i0)eQ0)=>
o0
M0P

i1
<=((f0 o0)eP0)
<-

o0
M0Q

E1 :
i1

->
((g1 i1)eQ1)=>
o1
M1P

i2
<=((f1 o1)eP1)
<-

o1
M1Q

E2 :
i2

->
((g2 i2)eQ2)=>
o2
M2P

i3
<=((f2 o2)eP2)
<-

o2
M2Q

..............

En :
in

->
((gn in)eQn)=>
on
MnP

in+1
<=((fn on)ePn)
<-

on
MnQ

3.1.7.
Simple classification of moves

Moves in STROBE belong to an abstract data type consisting of a move type and a move expression. Move types are recognized by the agent that receives the move and consequently performs the corresponding activities, such as updating the private environment, activating a diagnosis, generating an answer or generating the next move. Move types, in this simple version of the model, include the intention of the sender.

TABLE 2: Move classification and interpretation, single initiative

move type
move subtype
initiating move:

examples
effect

on receiver
reacting move:

examples (type)

assertion
definition of a variable
(define a 3)
environment modified
ok (ack)

assertion
definition of a procedure
(define

(square x)

(* x x))
environment modified
ok (ack)

request
value of a variable
a
(eval a) in environment
· 3 (answer)

· unknown (answer)

· error (answer)

request
value of a procedure
square
(eval square) in environment
· (lambda(x) (* x x)

in < definition environment >)

(answer)

· unknown (answer)

· error (answer)

order
application of a procedure to arguments
(square a)
(apply

(eval square)

(eval a))
· 9 (executed)

· unknown (answer)

· error (answer)

ack
acknowledge positive
ok
update partner's model
generate next move

ack
acknowledge unknown
don't know
update partner's model
generate next move

ack
acknowledge negative
error
update partner's model
generate next move

answer
value
3
start diagnosis
generate next move

answer
procedural value
(lambda (x) (* x x)

in <definition environment >)
start diagnosis
generate next move

executed
value (plus potential side effect)
9
start diagnosis
generate next move

3.2.
Cognitive environments
In the environment model of evaluation, the environment is responsible for what usually is called the memory (or the state or finally the context). We have chosen initially to represent explicitly four such contexts, to be interpreted as the private environment and the partner's model for each of the two agents. For the moment, the private environment is used for the evaluation of the partner's moves while the partner's model is only used for activating a (primitive) diagnosis. Environments are modified during the dialogue process, according to the common pragmatic principles governing each agent's behavior reacting to the partner's moves.

We have defined Cognitive Environment a first class Abstract Data Type (ADT) that is made of a set of one or more labeled contexts. Each context is an environment ADT in traditional terms, i.e. a sequence of frames each of which is a sequence of bindings. Contexts are assumed to be coherent internally, but not necessarily one with another. A binding is a pair name-value, where names are identifiers and values are objects in the domain of discourse, i.e. in our case in the domain of the formal language Scheme itself.

In ADDIN
[27] we may find a precise treatment of first class environments in Scheme and, due to their limitations in lexically scoped languages, first class extents. The capturing problems described by the authors, do not seem to be of immediate concern for our experimental context, even if that may become the case at a maturer phase of the project. Therefore we agreed with them that adding environments as first-class values can greatly enhance the expressiveness of a language ADDIN
[19] and consider their first class extents for a potential subsequent refinement of our model, eventually stimulated by their finding that once first class extents are introduced, it is simple to consider environments in Scheme as the natural data structure for representing components of objects (and classes at the same time).

3.2.1.
multiple contexts
Dialogues are processes occurring between agents that are based on the REPL cycle on turn by each agent. The set of move types reported in Table 2 might be used to model any interaction among two agents conventionally called P and Q.

The effect of any move of P on Q is modeled by the evaluation of the move of P in the Q's private environment. Here we have the problem: the private environment of Q may not be the one expected by P. As a consequence, the value (the effect) of P's move on Q may be different from the value/effect expected by P. This fundamental phenomenon occurs because P and Q are assumed to be autonomous, i.e. P does not have direct access to bindings in Q's cognitive environment. If P knew all that Q knows, P would foresee Q's behavior all the times. The reaction of Q to a move from P would be "expected" by P. Expected does not mean specified. For instance, in traditional Information Systems, even if one does not know the answer to a query, one foresees properties of the answer that make it relevant for the informative needs of the queerer.

3.2.2.
Emerging functionality's
The cognitive environment notion enhances the traditional access, in the environment, to a value from its name. Thanks to cognitive environments, agents may possess quite powerful search + access functionality's similar to the one available in temporally evolving, advanced information systems. Our cognitive environment is in fact a set of databases plus the update and query language consisting of constructors and selectors. Each database is progressively build during the dialogue as a side effect of pragmatic markers as denoted by move types, and searched in the moments an agent needs it.

In the following, a preliminary list of foreseen functionalities is presented. The list is not exhaustive, but it gives an idea of the potential properties of first class, cognitive environments associated to agents in the STROBE model.

Multiple access

Access by name: this is the traditional update / query that looks for the first instance of the identified variable in the nearest frame. Access by value: one may ask for the first available name of a concept associated to a specific value. Access by name and value: one may ask for the first available binding name-value of a concept.

Access to the history of the bindings

The above accesses may be recursively repeated onward in a single context (environment) up to the global frame. A query may sound like: give me all the names of variables with value <value> that are available in the set of frames belonging to <context>. Eventually, one may introduce versioning, i.e. labeled traces of variable updates, so that the "historical" state changes may be saved and queried.

Access to multiple contexts

As contexts are environments in traditional Scheme terms, one may perform multiple evaluations of the same expression in order to check if any of the contexts may justify some unexpected behavior. Any set operation (intersection, union, etc.) on environments may produce a new environment that may justify an unexpected behavior. As we will see, one may associate to an agent several labeled environments, one each partner agent so that expressions are evaluated in the context established during each sub-dialogue.
Search ≠ access

Information systems of the future will be able to be more adapted to the needs of the human user. For instance, search of the information will answer questions such as: "given the following need: <a formalized need>, where in a networked set of knowledge sources (humans, databases eventually not homogeneous...) may I find probably even a partial response to my need?" while access follows (or does not follow, if the results of the search phase make access irrelevant or not enough interesting for the queerer) with a significant saving of resources. We have solved the problem in a non trivial application domain ADDIN
[28] by building a kind of shared ontology - a common lexicon - that meta-describes each knowledge source in the net, and applying a concurrent, distributed search strategy. If cognitive environments are first class data structures, these techniques may be applied.

4.
STROBE agents communicating by KQML-like messages

In the preliminary version of STROBE described above, there were many limitations that we discuss hereafter.

Firstly, the pragmatic markers associated with messages were quite elementary, i.e. the six basic performatives representing speech acts: assert, query, order, acknowledge, answer and executed. We wanted those performatives to be extended and extensible, as we know that the range of "speech acts" occurring in real dialogues is much wider.

Secondly: message exchange between agents was synchronous and sequential. Mixed initiative dialogues, i.e. role exchange (or, in the two-agent case - swapping) required the introduction of a coordinator agent, a kind of interface with an external observer. Multiple autonomous agents
 were not supported at the level of the language.

Thirdly: no provision was made for an explicit identification of the language of messages, that was assumed to be constantly Scheme, in other words there was no mean - at the level of the language - to denote any "content language abstraction".

Some of these features are available in KQML, but that agent communication language does not include other properties that we consider necessary for our scenarios. Let us just mention those limits of KQML.

Concerning the variety of performatives available in KQML, these are mainly concerned with transmission of messages, interoperability and buffering
. All these are enabling conditions for multi-software-agent communication, but they are insufficient for dialogues that include humans, such as the ones we envision in our scenario (cf. ADDIN
[31] for an example of classification of pragmatic components of educational dialogues)

Concerning concurrency, KQML includes broadcasting and the management of queues of messages. However, there is no effort in KQML to model agents with multiple viewpoints. Further, KQML does not need reflection, as it is not concerned with "real autonomy" such as, for instance, the one shown when an agent takes the initiative.

Finally, concerning the content language abstraction, KQML indeed allows to separate the content of messages (including their language syntax and semantics) from the pragmatics. Even if we know that natural languages and also, in some way, formal languages do mix pragmatic aspects with semantic and syntactic ones, this separation is useful for our purposes and thus we have included it in our design.

4.1.
Our KQML extension: supporting richer pragmatic primitives

An improvement of the STROBE architecture has been achieved by implementing an interpreter of KQML messages in Scheme. The interpreter has been written in STk 3.0
 using the object extension available. Agents in our new prototype belong to an agent class and communicate with each other by means of KQML messages that are also objects.

The STk implementation of agents required extending STk with a set of functionalities for the management of sockets
. These allow messages among agents to be buffered and handled by the agents at due time. Once any of those messages is read by the KQML agent, the corresponding performative activates the actions required by the semantics of the performative as described in ADDIN
[30] .

Because a KQML object is also a Scheme object, our agents may be easily associated to cognitive environments modeling multiple viewpoints.

The current actions associated to the performatives are quite simple: the design of actions adequate for realistic dialogues, including educational dialogues, is the next step of our research plan to be performed together with experiments on selected domains
.

4.2.
Code excerpts

Agents are defined as members of the class <Agente>, partially defined in STk as shown in the excerpt below:

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; Class that generates agents

;;; communicating by means of KQML messages.

;;; Notice that KQML messages are STk objects.

(define-class <Agente>

 ()

 ((name ;;; class name

 :initform '<Agente>)

 (my-name ;;; instance name

 :initform '()

 :getter %get-name

 :setter %set-name!)

 (kqml-object ;;; kqml object managing communication

 :initform '()

 :getter %get-kqml

 :setter %set-kqml!)

 (environments ;;; Set of environments available,

; ;;; one for each partner in the communication.

 :initform '((env)) ;;;

 :accessor %env)

 (pipe ;;; active pipes

 :initform '((pipe)) ;;;

 :accessor %pipe)

 (forward ;;;

 :initform '((forward)) ;;;

 :accessor %forward)

 (standard-handler ;;;

 :initform %standard-eval

 :accessor %standard-handler)

 (handlers ;;;

 :initform '((handlers)) ;;;

 :accessor %handlers))) ;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

KQML messages are instances of the Class <KQML> as briefly indicated in the excerpt below:

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define-class <KQML>

 ()

 ((name ;;; class name

 :initform '<KQML>)

 (my-name ;;; instance name

 :initform '()

 :getter %get-name

 :setter %set-name!)

 (direct-connections ;;; connections with other agents

 :initform '((direct)) ;;; list of pairs: (agent-name . socket)

 :accessor %dir-con)

 (p-socket ;;; socket for accepting connections

 :initform #f

 :accessor %passive)

 (received-connections ;;;

 :initform '((received)) ;;;

 :accessor %ric-con)

 (ports ;;;

 :initform '((ports)) ;;;

 :accessor %ports)

 (messages ;;; messages awaiting to be sent

 :initform '() ;;; queue

 :accessor %msg)

 (pipe ;;; active pipes

 :initform '((pipe)) ;;;

 :accessor %pipe)

 (broadcast ;;; received "broadcast" performatives

 :initform '() ;;;

 :accessor %broadcast)

 (automatic-functions ;;;

 :initform '((functions)) ;;;

 :accessor %func)))

;;
It is clear to us that these excerpts give just a vague idea of our prototype. A complete description, however, would not only be too long for this paper, but also not particularly beneficial for the reader because the current prototype mixes features at the level of implementation with higher level ones that denote properties at the dialogue (pragmatic) level.

What seems to us more relevant here is a discussion concerning our planned enhancements of STROBE according to the goals that we have outlined previously
.

5.
Feasible requirements for modeling multiple communication

5.1.
Autonomous agents are not just pair-wise communicating

Agents as they have been modeled in the first STROBE prototype are sequential agents that exchange messages each with one other agent at a time. The introduction of a coordinator-agent allowed introducing a minimal level of initiative in the dialogue among agents: at the end of each exchange, the coordinator may give the initiative for the next exchange to the agent that previously responded. The coordinator agent is an interface with the external (human) experimenter, but also a means of simulating mixed initiatives
.

Now: if any agent consists only of the information assumed to be available during the dialogue with one single partner agent, and if the initial state of both agents is known to each other (they are both instances of the same agent class), as it occurred in our preliminary experiments ADDIN
[19, 22] , there is no reason for any of the two agents to suspect that the partner's reaction to any of its moves will not coincide with the expected one. If the dialogue occurs between two artificial agents that know each other at the beginning and communicate only with each other the situation is not an open one. Each agent may fully reconstruct the partner's state. Real situations are quite different, they are inherently open.

An open situation for an agent, say A communicating with a partner B is a situation such that at any time B is unable to predict the behavior of the partner. One case may be that B does not know fully the initial state of the partner A. Another one is that A is allowed to react to messages sent by other agents (for instance, another agent called C) while it keeps also active the conversation with B. Even if the phenomenon is certainly not new, from a purely "shared variable" viewpoint, it may help understanding to recall it in detail within our communication model because we may include explicit pragmatic information that is usually not considered in other frameworks.

Initiating messages reaching an agent may basically consist of assertions, queries and orders. Assume that assertions are the only messages that certainly modify the agent's environment. Queries are usually non-invasive, while orders may be but not necessarily are. Therefore our agent A communicating with B and with C may only "wonder" B or C in case its dialogues with C or B respectively, did have side effects on its (A's) private environment - e.g. as a consequence of assertions -, as we see easily hereafter.

For instance, an agent A that communicates with B up to a certain moment, then with C and then again with B may be - for B - an open system, Taken at the extreme consequences: if B has sent the message (assert (define x 3)) to A, and A has acknowledged, and then C has sent to A the message (assert (define x 4)) and A has acknowledged; then B sends A (request x): B will receive (answer 4) instead of (answer 3) from A as it would have expected.

B -> A
A -> B
C -> A
A -> C

(assert (define x 3))

(ack)[envA (x 3)]

(assert (define x 4))

(ack)[envA (x 4)]

(request x)

(answer 4)

In STROBE the situation is controlled by assuming each dialogue to be situated within a pair of environments: one private to the agent and the other reflecting the current partner's model. Extending the hypothesis to multiple partners, it is natural to think extending the environments available to each partner with a labeled environment for each partner reflecting the partners assertions "historically". If that is true, then A should answer 3 to B's request because the value of the variable x required by B is to be found in A's environment reserved by A to B : envAB. This holds for every assertion of type define.

B -> A
A -> B
C -> A
A -> C

(assert (define x 3))

(ack)[envAB (x 3)]

(assert (define x 4))

(ack)[envAC (x 4)]

(request x)

(answer 3)

But: what about set! (i.e. real assignments) potentially modifying any local or global variable? In case x is global, A will not be able to reset the value B believes A knows (x 3) because x - a global variable for A -, was later assigned by C during the dialogue.

In order to behave properly, A should protect also the global variable x, for instance generating two sub-environments envABg and envACg of the global where to keep the values of x assigned by B and C
. We have adopted this approach in the new version of STROBE.

Our intuition, and the preliminary experiments on multi-agent dialogues, suggest that differences with similar protection mechanisms known in the literature, will have to do with the pragmatics of communication, i.e. exactly those roles, goals, intentions etc. that allow to distinguish agents from programs, and agent communication languages from network protocols. In the following section, we further elaborate on similarities and differences between our work and other ones.

5.2.
The coordination of message exchanges in multi-agent dialogues

The following transcript concerns three STROBE agents A, B, C communicating by means of KQML-like messages. It shows how an inconsistency may occur when agent B "is told" by agent A a value for the variable create-rational that is inconsistent with the value subsequently "told" to B by agent C, even if both definitions of the function create-rational are semantically correct.

AB ;;; Messages from A to B

(achieve :content (define create-rational (lambda (x y) (cons x y))) :sender A :receiver B)

(achieve :content (define numerator (lambda (x) (car x))) :sender A :receiver B)

(achieve :content (define denominator (lambda (x) (cdr x))) :sender A :receiver B)

(achieve :sender A :receiver B :content

(define plus (lambda (x y) (create-rational

(+ (* (numerator x) (denominator y)) (* (numerator y) (denominator x)))

(* (denominator x) (denominator y))))))

(evaluate :content (create-rational 1 2) :sender A :receiver B :reply-with d1)

BA ;;; Messages from B to A

(tell :content (1 . 2) :sender B :receiver A :in-reply-to d1)

AB

(evaluate :content (plus (1 . 2) (create-rational 1 3)) :sender A :receiver B :reply-with d2)

BA

(tell :content (5 . 6) :sender B :receiver A :in-reply-to d2)

Continues with a third agent C.

CB ;;; Message from C to B

(achieve :sender C :receiver B :content

(define create-rational (lambda (x y) (cons (/ x (gcd x y)) (/ y (gcd x y))))))

AB

(evaluate :content (plus (1 . 2) (1 . 6)) :sender A :receiver B :reply-with d3)

BA

(tell :content (2 . 3) :sender B :receiver A :in-reply-to d3)

For A this is an unexpected response, as A taught B a definition of rational numbers that did not include the reduction of numerator and denominator by their greatest common divisor. The example shows that assignement of a variable (create-rational) private for B, but accessible to both A and C may cause A (or either C) to perceive B as behaving unexpectedly (or incorrectly).

The availability of a cognitive environment in B allows A to eventually understand B's unexpected behavior by querying B about the reason for its belief that (plus (1 . 2) (1 . 6)) is (2 . 3) instead of (8.12). Agent A may therefore activate a diagnostic procedure that queries B to provide for an answer to the query (plus (1 . 2) (1 . 6)) not only in B's current environment , but also in B's environment dedicated to A. If this answer fits A's expected one, then A understands that envBA is different from envBC. A subsequent query about the values of plus put by A to B will not find the cause of the difference, but a query about create-rational will, so that A may come to the conclusion that C has asserted B a version of the create-rational function that simplifies numerator and denominator of rational numbers by dividing both by the gcd. Perhaps A did not use gcd in its definition of create-rational because it did not possess any gcd concept; therefore A may ask B or C for such a concept and finally resolve B's ambiguity by re-asserting A's view on rational numbers as equal to C's.

This kind of diagnostic process has been implemented in its essence in our system, so that we may conclude that, from our preliminary work, cognitive environments
 and pragmatically marked messages support effectively (and simply) the run time generation of dialogues among autonomous agents that map onto realistic dialogues among human or artificial agents communicating asynchronously in a fashion potentially including inconsistencies.

5.3.
STROBE agents versus Actors

The discussion concerning concurrency - parallelism in programming languages reported in ADDIN
[34] highlights the foundations of the problems we find in our communication model. Basically, Agha identifies three approaches:

-sequential processes, i.e. processes transforming states;

-functions, i.e. stateless procedures processing streams of values;

-actors, i.e. objects exchanging asynchronous messages and able to transform dynamically their own behavior (eventually generating new private data / methods) and the topology / behavior of the net (by generating new actors).

The last solution is shown to subsume the previous ones. We assume Agha is right, and therefore assume Actors as a basis for our own discussion about STROBE agents.

Actors are equipped with handlers of buffers of asynchronously incoming messages. We adopt the same solution. Actors do not really maintain a "self" because they may modify their own behavior in a principled, fundamental way (cf. ADDIN
[34] , page 9, note 1: "sequential processes may activate other sequential processes and multiple activations are permitted, but the topology of the individual process is still static" differently from the case of Actors). We do not exclude, in STROBE, to generate new agents dynamically. Agents are objects, objects are functions and Scheme may define or set! functions dynamically. However, that is not the only way our agents are allowed to react to messages.

Our cognitive environments already represent a kind of dynamic generation of new actors / actor's behaviors. Consider, for instance, agent B of the previous example. When B receives from C the message

(achieve :sender C :receiver B :content

(define create-rational (lambda (x y) (cons (/ x (gcd x y)) (/ y (gcd x y))))))

B updates a newly created environment envBC dedicated to C thus becoming a single agent that behaves in two different ways. The "self" of B, however, is not lost: B has two "selfs", from that moment on; one that reflects B's dialogues with A and one that reflects B's dialogues with C. Agha's actors would split into two. Our B agent behaves as two different actors, still maintaining control over its own history and therefore the origins of its behavior. Therefore B may answer A (or C or any other agent) questions concerning any labeled subenvironment available.

5.4.
Metaphors for communication: telephone versus mail

The telephone system was cited in ADDIN
[34] as a real world metaphor possibly associated to systems with synchronous communication (like Hoare's Communicating Sequential Processes and Milner's Calculus of Communicating Systems).

STROBE is clearly adopting the asynchronous model, thus the metaphor of the postal system, as attributed in ADDIN
[34] to the dataflow and the actor models of computation. Dataflow models are not adequate for us, because their functional behavior exclude dependency from the history of interactions, which is for us a requirement. But the Actor model is as well limited for our purposes. Let us give two reasons.

Firstly, as we briefly described before, actors modify their behavior (or generate new actors) forgetting their history. Our cognitive environment allows our agents to possess multiple behaviors emerging from different interaction histories with other agents but keeping the historical reasons of that multiple behavior.

Secondly, actor's buffered asynchronous communication model fits the mail system metaphor only in a limited way. Mailboxes in actors include messages in the actor language itself, not distinguishing between the content of the message and its pragmatic level. It is like a real world postal mailbox containing only the letters, without envelopes or an electronic mailbox containing only the messages, not an overview of sender, title, etc. of each incoming electronic mail. As a consequence, actor's "arbiters", i.e. the schedulers of priorities in the processing of messages by actors, dispose of limited information with respect to the needs of a really autonomous agent such as a human (or even an artificial but autonomous one). KQML-like messages and the explicit description of pragmatic information separated from the content allow, instead, our agents to be equipped with schedulers of incoming messages that fit much better realistic behaviors of autonomous agents
.

For instance, suppose we receive in our electronic mail system EUDORA (or any other one) two messages such that their effects on our plan of what to do today may be inconsistent: one from a colleague, chairperson of a Conference where we have an accepted paper that has to be revised and sent for publication before tomorrow, and one from the Director of our Department. The first message urges us to commit our delivery of the paper on time; the second one urges us to participate to an important, unforeseen meeting. Now: the scheduling of activities and answers is fully under our own control, and EUDORA helps us to tailor our behavior by providing pragmatic information - different from the pure content of the messages - that is useful for deciding what to do, even if we are free to adopt a behavior that - a posteriori - may result to be the worse one. We may, for instance, decide either

a. to look first to all messages before committing us with an acceptance either for the paper or for the meeting (this solution resembles the periodic "synchronization" in distributed databases: no real change occurs before the effects of all, possibly inconsistent, proposed changes, periodically, are evaluated; the same buffering mechanism we have described and implemented when we talked about set! operations in global variables)

or either (e.g. if messages to read are too many so that our estimated time to read all of them would exclude us to spend the afternoon in finishing the paper or attending the meeting):

b. we commit ourselves to the paper - and later discover that we can't go to the meeting - (or vice versa, according to which message we opened first).

In both cases we notice that the scheduler of our activities concerning the access to the electronic mailbox belongs to us and that decisions taken by that scheduler are influenced by meta-level information on the messages.

Cognitive environments AND pragmatically marked messages seem to offer us all the opportunities to model a realistic "postal", asynchronous message exchange computational paradigm where agents are equipped with full autonomy, including the scheduling of actions in response to incoming messages.

Agents behaving this way are like operating systems, equipped with interpreters, compilers, ontologies (to be stored in their environments) and are autonomous in the sense that they do not just react to incoming buffered messages (like actors, that represent the asynchronous concurrent version of a client-server model of computation) but proact by planning what to do next, including the strategy of reaction to messages, according to a scheduler that is in itself a dynamic, evolutionary program, the kernel of the agent’s behavior. For a recent, excellent introduction to the fundamental aspects of actors and agents, see [39] .

5.5.
The explicit representation of state changes in STROBE agents

Let us now reflect briefly on how to represent state changes in agents in our model. In ADDIN
[30] the authors propose / use ATN-like grammars to describe state changes as a result of performatives exchanged by agents. They also explicitly talk about "dialogue grammars" that describe the conversation polices. Their remark that the paradigm of parsing <<differs from the usual one in that the "sentence" (the set of messages exchanged, seen as terminals) might well be unfinished, meaning that the thread might not be complete>> is correct.

We have proposed quite long ago ADDIN
[35, 36] to use ATN grammars to describe dialogues, in particular educational dialogues. The DART
 system, built on PLATO, was designed and implemented with this purpose. However, we now see clearly a danger in such an approach, and understand in the same time why Labrou and Finin's ATN proposal is correct, while for STROBE agents this approach would not be correct. We recall that KQML agents do have a unique "self", as KQML is designed for dialogues among software agents that assume consistency among agents. Our agents equipped with cognitive (multiple) environments, in order to cope with multiple viewpoints in human communication, do not possess a unique "self". ATN grammars do not foresee, in their original definition, multiple co-existing, eventually inconsistent states
.

5.6.
Future developments

A pre-emptive operating system in Scheme is an illuminating exercise if one wishes to familiarize with continuations and engines ADDIN
[4] . We have done the exercise. The operating system functionalities may be integrated within STROBE, i.e. merged with the ones of the KQML interpreter. Such a task scheduler has been implemented in order to separate the control of the allocation of resources considered available within a single agent from the control of KQML message exchanges with partner agents. Single agents may activate their own resources in a pre-emptive, time-shared fashion like a traditional operating system, but events occurring externally and producing messages at the input require a scheduling regime that is associated to the semantics of KQML performatives, i.e. the pragmatics of communication. The latter will require substantial modifications to the previous task scheduler.

Finally, KQML is a large-scale project aiming at interoperability between heterogeneous systems. STROBE is a model and a small scale project aiming at performing experiments with realistic agent-to-agent dialogues in order to refine the semantics of performatives, i.e. define higher level primitives that allow to design and implement systems for human-computer communication according to better pragmatic principles as the ones currently used. Therefore STROBE is at the moment monolingual (Scheme) but also highly compositional. The requirement of (relative) cognitive simplicity in the design advises us to focus on functionalities even at the costs of efficiency and robustness. However, three aspects were beyond the immediate scope of STROBE, i.e. interfaces, networking and platform independence.

For these reasons we have constructed a language integrator, called JASCHEMAL that allows Scheme code to be compiled by Java programs into Java Byte Code, and facilitates also mutual calls. The prototype is currently developed for a significant subset of Scheme standard primitives, including procedural objects and continuations.

6.
Conclusions

Recent developments in Computing (e.g. networks, multimedia interfaces) have produces an extraordinary acceleration in the applicative needs for truly interactive, human-computer communication systems for various purposes. For instance, Education is an area of rapid growth of demand, Information another one. Object oriented technologies, considered to be an AI exclusive domain in the 70ties, are current state of the art and objects operate by exchanging messages. The shift from programs/algorithms within a single machine to processes/objects exchanging messages among various cooperating agents is perhaps the major current challenge in applicative Computing. It reduces basically to consider communication as driving control, not vice versa. The mental model of the underlying virtual machine is necessarily different from the previous one.

Human communication by exchanging messages shows that the pragmatic aspects of communication (goals, knowledge, intentions...) drive the success of the communicative processes. Emerging mainly from the needs of the AI community, in particular interoperability between knowledge bases for informative purposes, the Knowledge Sharing Effort has produced in the US a first mature language - called KQML - that incorporates pragmatic primitives, its performatives. From the needs of advanced educational applications, we have proposed a model and architecture called STROBE that shares the same objectives but suggests slightly different paths for achieving them.

Scheme is considered in STROBE both as a description and a prototyping language. Message exchange is viewed as a dynamic process where agents decide the next move by assembling / selecting it after evaluating the stream of previous messages exchanged with the partners. Agents are equipped with cognitive environments, i.e. trees of frames labeled according to the history and the partner's messages. Scheduling of tasks in agents occurs in a fashion similar to that of operating systems, but unlike them (and actors) is influenced by the explicit pragmatic layer that belongs to messages. When an agent processes a message, it is seen by its partners as an enhanced interpreter of KQML-like messages, that includes as a component an interpreter of the content language indicated in the message.

The integration of the proposed architecture with available networks, interfaces and platforms, i.e. most of the "lower level" technologies necessary for a realistic experimentation is achieved by coupling Scheme with Java.

Even if the work done is far from being complete, its properties become progressively clearer. One concrete result is that the concept is feasible. Another, to be debated, hypothesis is that it is also helpful for studying complex communicative phenomena by experimentation. Finally, the most important claim - yet only partially justified - is that it is relatively simple. If this were true, we would have reached our goal, as complexity of languages, tools and systems too often has hindered the accumulation of results in the research and a sensible utilization of them in practical applications.

7.
References

 ADDIN
[1]
M. Woolridge, J. P. Muller, and M. Tambe, “Intelligent Agents II. Agent Theories, Architectures, and Languages,” in Lecture Notes in Artificial Intelligence, vol. 1037, J. G. Carbonell and J. Siekmann, Eds. Berlin: Springer Verlag, 1996, pp. XVIII- 437.

[2]
J. Self, “Artificial Intelligence in Education: Towards Computational Mathetics,” University of Lancaster, Lancaster, UK, Unpublished draft May 1995 1995.

[3]
S. A. Cerri and V. Loia, “A Concurrent, Distributed Architecture for Diagnostic Reasoning,” Journal of User Modeling and User Adapted Interaction, vol. 7, pp. 69-105, 1997.

[4]
R. Kent Dybvig, The Scheme Programming Language; ANSI Scheme: Prentice-Hall, Inc., 1996.

[5]
C. Queinnec, Les langages LISP. Paris: InterEditions, 1994.

[6]
H. Abelson and G. J. Sussman, Structure and Interpretation of Computer Programs, 2nd ed. Cambridge, Mass.: MIT Press, 1996.

[7]
J. Mayfield, Y. Labrou, and T. Finin, “Evaluation of KQML as an Agent Communication Language.,” in Intelligent Agents II. Agent Theories, Architectures, and Languages, vol. II, Lecture Notes in Artificial Intelligence, M. Woolridge, J. P. Muller, and M. Tambe, Eds. Berlin: Springer, 1996, pp. 347-360.

[8]
S. A. Cerri, “Models and Systems for Collaborative Dialogues in Distance Learning,” in Collaborative Dialogue Technologies in Distance Learning, vol. 133, Computer and Systems Sciences, M. F. Verdejo and S. A. Cerri, Eds. Berlin: Springer Verlag, 1994, pp. 119-125.

[9]
R. Pinkilton and C. Parker-Jones, “Interacting with Computer-Based Simulation: the role of dialogue,” Computers Educ., vol. 27, pp. 1-14, 1996.

[10]
H. C. Bunt, “Dialogue analysis and speech act theory,” Institute for Perception Research, Eindhoven 330/II, 1978.

[11]
S. Giroux, “Open Reflective Agents,” in Intelligent Agents II. Agent Theories, Architectures, and Languages, vol. II, Lecture Notes in Artificial Intelligence, M. Woolridge, J. P. Muller, and M. Tambe, Eds. Berlin: Springer, 1996, pp. 315-330.

[12]
S. Leman, P. Marcenac, and S. Giroux, “A Generic Architecture for ITS based on a MultiAgent Model,” in Intelligent Tutoring Systems, vol. 1096, Lecture Notes in Computer Science, C. Frasson, G. Gauthier, and A. Lesgold, Eds. Montréal: Springer Verlag, 1996, pp. 75-83.

[13]
J. Moeschler and A. Reboul, Dictionnaire encyclopédique de pragmatique. Paris: Editions du Seuil, 1994.

[14]
J. R. Searle, Speech acts. An essay in the philosophy of language. Cambridge, UK: Cambridge University Press, 1969.

[15]
D. Guin, “Towards Models of Interaction Between an Artificial Agent and Human one,” in Collaborative Dialogue Technologies in Distance Learning, vol. 133, ASI Series F: Computers and Systems Sciences, M. F. Verdejo and S. A. Cerri, Eds. Berlin: Springer Verlag, 1994, pp. 170-180.

[16]
P. Reitz, “Contribution à l'étude des environments d'apprendissage. Conceptualization, spécification et prototypage.,” PhD Thesis. Departement d'Informatique. Montpellier: Université de Montpellier II, 1992.

[17]
S. A. Cerri, “The "Natural Laboratory" Methodology Supporting Computer Mediated Generic Dialogues,” in Collaborative Dialogue Technologies in Distance Learning, vol. 133, Computer and Systems Sciences, M. F. Verdejo and S. A. Cerri, Eds. Berlin: Springer Verlag, 1994, pp. 181-201.

[18]
J. Self, “Computational Viewpoints,” Computing Department, University of Lancaster, Lancaster, UK AI Report n. 44, March 1990.

[19]
S. A. Cerri, “Cognitive environments in the STROBE model,” presented at EuroAIED: the European Conference in Artificial Intelligence and Education, Lisbon, Portugal, 1996.

[20]
B. Cheikes, “Should ITS Designers Be Looking For A Few Good Agents?,” presented at AI-ED Workshop on Authoring Shells for Intelligent Tutoring Systems, Washington, DC, 1995.

[21]
A. Paiva, “Learner Modelling Agents,” presented at EuroAIED: the European Conference in Artificial Intelligence and Education, Lisbon, Portugal, 1996.

[22]
S. A. Cerri, “Computational Mathetics Tool kit: architecture's for dialogues,” in Intelligent Tutoring Systems, vol. 1096, Lecture Notes in Computer Science, C. Frasson, G. Gauthier, and A. Lesgold, Eds. Montréal: Springer Verlag, 1996, pp. 343-352.

[23]
D. P. Friedman and A. Yonezawa, “Special issue on Computational Reflection.,” in LISP and symbolic computation. An International Journal., vol. 9, Nos. 2/3, R. R. Kessler, Ed. Dordrecht: Kluwer, 1996, pp. 151-257.

[24]
S. Jefferson and D. P. Friedman, “A Simple Reflective Interpreter,” LISP and symbolic computation, vol. 9, pp. 181-202, 1996.

[25]
K. Noermark, “Simulation of Object-Oriented Concepts and Mechanisms in Scheme,” Institute of Electronic Systems, Aalborg University, Aalborg, DK R 90 01, ISSN 0106-0791, 1991.

[26]
S. C. Garrod and G. Doherty, “Conversation, co-ordination and convention: an empirical investigation of how groups establish linguistic conventions,” Cognition, vol. 53, pp. 181-215, 1994.

[27]
S.-D. Lee and D. P. Friedman, “First-Class Extents,” Computer Science Departement, Indiana University, Bloomington, Indiana August 4, 1992.

[28]
A. S. Fabiano and S. A. Cerri, “Concurrent, asynchronous search for the availability of knowledge,” Applied Artificial Intelligence Journal, vol. 10, pp. 145-161, 1996.

[29]
J. Ferber, Les systèmes multi-agents. Vers une intelligence collective. Paris: InterEditions, 1995.

[30]
Y. Labrou and T. Finin, “A semantics approach for KQML - a general purpose communication language for software agents.,” presented at Third International Conference on Information and Knowledge Management, 1994.

[31]
R. Pinkilton, “Analyzing Educational Discourse: The DISCOUNT Scheme,” Computer-Based Learning Unit, The University of Leeds, Leeds, UK, TR n. 96, April 1996.

[32]
P. Brusilowsky, E. Schwartz, and G. Weber, “ELM-ART: An Intelligent Tutoring System on World Wide Web,” in Intelligent Tutoring Systems, vol. 1096, Lecture Notes in Computer Science, C. Frasson, G. Gauthier, and A. Lesgold, Eds. Montréal: Springer Verlag, 1996, pp. 261-269.

[33]
S. A. Cerri, “Learning Computing: understanding Objects by understanding Variables and Functions,” Object Currents: The first Online Hypertext Journal on Internet concerning Object Oriented Programming, vol. 1, pp. http://www.sigs.com/objectcurrents/, 1996.

[34]
G. Agha, Actors: A Model of Concurrent Computation in Distributed Systems. Cambridge, Mass.: The MIT Press, 1986.

[35]
S. A. Cerri, P. Mattijsen, and M. Van Dijk, “Computer Aided Design of Didactic Software,” in Interactive Techniques in Computer Aided Design, ACM-Italian-Chapter, Ed. Bologna, Italy: IEEE Computer Society, 1978, pp. 195-203.

[36]
S. A. Cerri and J. Breuker, “A rather intelligent language teacher,” presented at Artificial Intelligence : Proc. AISB-80 Conference, Amsterdam, NL, 1980.
[37]
S. A. Cerri, A. Gisolfi and V. Loia, “Towards the Abstraction and Generalization of Actor-based Architectures in Diagnostic Reasoning ,” in: <???this volume, 1999>>

[38]
G. Dionisi, “AL: un linguaggio per descrivere la comunicazione tra agenti ,” Tesi di laurea in Scienze dell’Informazione, Università di Milano, october 1998.

[39]
D. Kafura and J.P. Briot, “Actors & Agents ,” IEEE Concurrency, 6,2, pp. 24-29,1998.

8.
Acknowledgements

I am particularly grateful to Antonio Gisolfi, who invited me several times to conferences organized by him in Ravello, with a great professionality, including the one where I presented an extension of this work. Vincenzo Loia is the only person that has succeeded in convincing me to dedicate efforts in writing scientific papers, in particular recently when many occasions in this Country presented clear evidences that performing experimental research in Computing may be often considered loosing your time. Erick Gallesio has contributed in a significant way to refining my knowledge of Scheme, and is co-author of our joint presentation at the VIM Conference in Ravello. Julian Padget, finally, was always supportive and patient, particularly in accepting my delays. Thank you.

(This paper is a revised version of the one appeared in the Proceedings of JFLA97, Journées francophones des langages applicatifs, Collection Didactique de l’INRIA, Marc Gengler et Christian Queinnec (eds.), pag. 145-168 (1997) with the title: A simple language for generic dialogues: “speech acts” for communication.

� In Queinnec's book � ADDIN ��[5]� ADDIN �� �, chapter 5 is entirely dedicated to the relations between Scheme, Denotational semantics and lambda calculus.

� Model and architecture are used as synonyms: a computational model is the abstract view of a computational architecture, i.e. the set of expressions in a language, together with the underlying virtual machine (the evaluation method of the expressions) that describes the solution to a class of problems. We also share the view of those � ADDIN ��[6]� ADDIN �� � that believe that a program is a language for a class of problems. As an abstraction, STROBE is a model and an architecture. The (prototype) Scheme programs supporting STROBE functionality’s, together with the semantics of Scheme constitute a (prototypical) programming language embedded in Scheme.

� Whether this effect is measurable and how, is an important, but still open issue.

� Role exchange in Educational applications has been described in � ADDIN ��[15]� ADDIN �� � as an application of a model developed for machine learning reported in � ADDIN ��[16]� ADDIN �� �. The NAT*LAB project reported also in � ADDIN ��[17]� ADDIN �� � was exploring experimentally the potential advantages of role exchanges in educational dialogues according to the Natural Laboratory methodology.

� See: http://www.cs.umbc.edu/kqml/ for most KQML papers emerging from the Knowledge Sharing Effort.

� This section is a revision from � ADDIN ��[19, 22].� ADDIN �� �As these Conferences were for the AI in Education community, it seems necessary for us to survey here at least a minimal information. Notice that STROBE was initially concerned with synchronous, two-human-partner communication, even if mixed initiative was allowed by introducing a third partner called coordinator.

� Environment means here the set of frames that bind variables to values; i.e. the meaning is the one common in Programming Language research. In agent's research the meaning of environment may be associated to the set of stimuli external to the agent.

� By introducing a third "coordinator" agent that decided, at the end of each exchange, which partner agent between the two will be allowed to take the initiative for the next exchange.

� (called "environment" in the Agent's literature)

� Concerning cognitive studies on shared meanings, we find in � ADDIN ��[26]� ADDIN �� � that cooperation between humans is established after a long process negotiating a common "vocabulary".

� The notion of autonomous agent is controversial (cf. � ADDIN ��[29]� ADDIN �� � for a comprehensive presentation). The minimal level of autonomy that dialogues require is the one that allows any agent to take spontaneously the initiative. That may occur asynchronously. An agent, even processing another agent's query, may feel the need to put a query on turn, in order to use the results of the last one for the benefit of assembling an answer to the first one. This observation allows deducing that scheduling of activities within agents should occur internally to the agent. That would be excluded if agents would communicate with each other according to queued messages, where scheduling of message processing is external to the single agent and proprietary of the shared communication language. Actors, e.g., do have this common scheduling property and therefore we suspect that they may not easily be applied to modeling autonomous agent's dialogues.

� Even if KQML papers refer to "cognitive states of agents" � ADDIN ��[30]� ADDIN �� � it is clear that the "cognitive" property of KQML agents refers only to software agents, e.g. knowledge bases, assumed implicitly to be consistent and persistent.

� STk 3.0 is freely available via anonymous ftp at ftp.unice.fr . It has been developed and is currently maintained by Eric Gallesio: eg@ unice.fr . The current version available is 3.99 .

� These are: active-socket for creating an active socket; wait-input-socket for waiting until at least a socket receives a message, passive-socket to create a passive socket awaiting requests for connection, passive-socket-accept that accepts a connection request on a passive socket and restitutes a new socket to be used for communication; select-input-socket selecting which sockets do have available messages. The current version of STk supports sockets nicely.

� At the time of writing, a third implementation of the STROBE architecture is available with the name AL (Alice Language) [38]. In AL there is a reduction of primitive performative types to three, while any other one may be constructed from these by designing the behavior associated to new performatives in the form of a finite state automaton associated to each agent. Experiments with AL are currently ongoing, mainly in the area of electronic commerce. AL is freely available on request.

� As this paper is a revised version of one written earlier, most of the enhancements have been realized and are going to be published in due time.

� In � ADDIN ��[9]� ADDIN �� �, for instance, two experiments were performed: the first analyzed protocols from experimenter - learner interactions, including the common phenomenon of mixed initiatives, and the second from experimenter - student1 - student2 interactions. From their results, even a "simple" statistical analysis of the types of moves used in the two different dialogues may allow to draw conclusions concerning the learning outcomes, that may be used as requirements for subsequent applications.

� The solution is the one commonly used when accessing shared variables in Distributed DBMS.

� Remarkably, partner-labeled environments are proposed also in important applicative situations where WWW servers manage interactions with clients interleaved with each other and requiring non purely functional computations on the server (e.g. using a CL-HTTP server or MIT Scheme server remotely, as shown in � ADDIN ��[32]� ADDIN �� � and also in � ADDIN ��[33]� ADDIN �� �). That was in fact the architecture of the PLATO system (Un. Illinois, then CDC) in the 60ties, when PLATO was able to manage in real time up to 500 - 1000 simultaneous users (students and teachers!) with a centralized computing power of the order of a few MIPS. The historical note is not folklore, because current developments in the WWW will require substantial progress in "centralized" operating systems supporting threads of communications with users, if WEB computers will become diffused. A trend that is opposite to the one, typical of the 80ties, that consisted in distributing computing power and control to PCs and workstations.

� At the moment of writing, the second prototypical language implementing the STROBE architecture is available with the name JASKEMAL. The scheduler of messages in JASKEMAL is indeed proprietary of the agent, thus offers the opportunity to build really autonomous agents, each behaving as an operating system with a dynamic, proprietary scheduler.

� Didactic Augmented Recursive Transition Networks.

� While a description of a dialogue among autonomous agents may hardly be described by a single ATN or a single Petri Net (see, for example, [29]� ADDIN �� �) – a result already available in [35, 36]� ADDIN �� �– we believe that each agent may suitably be described by a finite state automaton FSA (or an ATN or a Petri Net). We agree with [38]� ADDIN �� �that a FSA is simpler as a Petri net, even if an ATN has more representational power, as it is an extension of a FSA with sub-nets and actions on registers.

